Image for Cardiovascular Pharmacology Concepts, Richard E Klabunde PhD

Cardiovascular Pharmacology Concepts

Richard E. Klabunde, PhD

Clinical Disorders:

Therapeutic Classes:

Mechanism Classes:

Also Visit

Cardiovascular Physiology Concepts textbook cover

Click here for information on Cardiovascular Physiology Concepts, 2nd edition, a textbook published by Lippincott Williams & Wilkins (2011)


Cardiovascular Physiology Concepts textbook cover

Click here for information on Normal and Abnormal Blood Pressure, a textbook published by Richard E. Klabunde (2013)


Systemic Hypertension

Arterial Pressure

Arterial blood pressure is generated by the left ventricle ejecting blood into the systemic vasculature, which acts as a resistance to cardiac output. With each ejection of blood during ventricular systole, the aortic blood volume increases, which stretches the wall of the aorta. As the heart relaxes (ventricular diastole), blood flows from the aorta into distributing arteries that transport the blood to the various organs. Within the organs, the arterial vasculature undergoes extensive branching and the vessel diameters decrease. The smaller arteries and arterioles serve as the chief resistance vessels, and through changes in their diameter, serve to regulate systemic vascular resistance and organ blood flow.

In hemodynamic terms, the mean arterial pressure (MAP) can be described by

Equation 1:   MAP = (CO x SVR) + CVP

where CO = cardiac output, SVR = systemic vascular resistance, and CVP = central venous pressure. Therefore, increases in CO, SVR or CVP will lead to increases in MAP.

While MAP is an important hemodynamic parameter and is required for calculating SVR, it is generally not measured in clinical practice unless a person's arterial pressure is being monitored with an indwelling catheter. The most common method for measuring arterial pressure is by use of a sphygmomanometer, which gives systolic and diastolic pressure values in mmHg.  The systolic pressure is the peak arterial pressure that occurs during ventricular systole, whereas the diastolic pressure is the minimal aortic pressure just before the ventricle ejects blood into the aortic. At normal heart rates, MAP can be estimated from the systolic (Psys) and diastolic (Pdias) values according to the following equation:

Equation 2:   MAP = 1/3 (Psys - Pdias) + Pdias

This equation is useful for estimating MAP from systolic and diastolic pressure values; however, this equation does not describe the hemodynamic variables that determine MAP. The hemodynamic variables that determine MAP are found in Equation 1.

Go to Next Page
Hypertension Categories

Revised 03/14/07

DISCLAIMER: These materials are for educational purposes only, and are not a source of medical decision-making advice.